Distribusi normal merupakan suatu distribusi yang umum digunakan dalam ilmu Statistika. Ketika mempelajari distribusi normal, kamu mungkin akan menemukan istilah-istilah seperti z score, tabel z atau tabel distribusi z. Sebenarnya apa pengertian dari istilah-istilah tersebut? Bagaimana cara membaca tabel z atau bisa disebut juga dengan z tabel? Pada artikel kali ini, akan dibahas mengenai materi terkait z tabel. Selain itu akan disajikan pula cara pembuatan z tabel menggunakan Microsoft Isi1 Distribusi Normal2 Pengertian Tabel Z3 Jenis-jenis Tabel Tabel z cumulative from Tabel z Tabel z complementary cumulative4 Cara Membuat Tabel Z5 Cara Membaca Tabel Z6 Contoh Contoh Soal Contoh Soal Contoh Soal Contoh Soal Contoh Soal 5Sumber Gerd Altmann from PixabayDistirbusi normal atau disebut juga distribusi Gaussian merupakan salah satu jenis distribusi dengan variabel random yang kontinu. Distribusi normal memiliki kurva yang berbentuk menyerupai lonceng. Fungsi densitas/kerapatan distribusi normal dinyatakan sebagai berikut Sumber Dokumentasi PenulisDimana π konstanta yang bernilai 3,1416e bilangan Euler yang bernilai 2,7183µ mean rata-rata populasi standar deviasi simpangan baku populasiBaca juga Penggunaannya Rumus SlovinDistribusi normal yang memiliki rata-rata = 0 dan standar deviasi = 1 disebut distribusi normal standar. Variabel random distribusi normal standar dilambangkan dengan Z yang merupakan hasil transformasi dari variabel random X yang berdistribusi Dokumentasi PenulisDi dalam distribusi normal dikenal suatu aturan yang disebut aturan empiris 68-95-99,7. Aturan empiris ini mengatakan bahwaSekitar 68% data berada dalam satu standar deviasi dari 95% data berada dalam dua standar deviasi dari 99,7% data berada dalam tiga standar deviasi dari aturan empiris diilustrasikan pada kurva distribusi normal maka dapat diperoleh Sumber Dokumentasi PenulisAturan empiris juga dapat diinterpretasikan sebagai peluang probabilitas yaitu jika kamu mengambil suatu data secara acak dari populasi yang berdistribusi normal, makaPeluang data tersebut berada dalam satu standar deviasi dari rata-rata adalah sekitar 0, data tersebut berada dalam dua standar deviasi dari rata-rata adalah sekitar 0, data tersebut berada dalam tiga standar deviasi dari rata-rata adalah sekitar 0, aturan empiris, kamu dapat mengetahui persentase data yang berada pada tiga letak saja satu standar deviasi dari rata-rata, dua standar deviasi dari rata-rata, dan tiga standar deviasi dari rata-rata. Namun bagaimana jika kamu ingin mengetahui persentase data yang berada pada jarak berapapun dari rata-rata? Untuk menjawabnya, kamu bisa menggunakan z score dan z distribusi normal memiliki berbagai kurva yang berbeda bergantung pada parameter µ dan , maka kita akan memanfaatkan kurva distribusi normal standar dengan melibatkan proses transformasi Dokumentasi PenulisNilai z hasil transformasi dari x yang berdistribusi normal disebut juga dengan z score standard score. Z score merupakan ukuran yang menentukan seberapa jauh jarak suatu nilai dengan rata-rata dalam satuan standar deviasi. Z score berada pada sumbu datar dari kurva normal. Z score akan bernilai positif jika nilainya berada di sebelah kanan rata-rata. Begitu pula sebaliknya, z score bernilai negatif jika nilanya berada di sebelah kiri Tabel ZZ tabel / tabel z adalah tabel yang berisi persentase luasan daerah di bawah kurva distribusi normal dapat juga menunjukkan probabilitas atau peluang yang dihitung berdasarkan z score. Tabel z statistik hanya digunakan untuk data yang berdistribusi z statistik pada umumnya dibuat dengan format berikut Kolom dan baris pertama dari tabel z statistik menunjukkan z pertama dari tabel z statistik berisi bilangan bulat dan bilangan di tempat desimal pertama bilangan bulat dan satu bilangan di belakang koma.Baris pertama dari tabel z statistik berisi bilangan yang menunjukkan bilangan di tempat desimal kedua bilangan kedua di belakang koma.Nilai yang berada di dalam tabel merupakan peluang. Interpretasi nilai peluang tersebut bergantung pada jenis Tabel ZTabel z cumulative from meanTabel z cumulative from mean menunjukkan luasan daerah di bawah kurva normal dimulai dari rata-rata titik 0 pada sumbu x, karena rata-rata dari distribusi normal standar adalah 0 menuju ke sebelah kanan sampai z score yang diinginkan. Dapat dikatakan pula sebagai peluang suatu nilai berada di antara 0 dan z atau P0 ≤ Z ≤ z. Pada tabel z jenis ini hanya berisi z score z cumulativeTabel z cumulative menunjukkan luasan daerah di bawah kurva normal dari negative infinity negatif tak hingga menuju ke sebelah kanan sampai z score yang diinginkan. Dapat dikatakan pula sebagai peluang suatu nilai kurang dari z atau PZ ≤ z. Tabel z cumulative berisi z score positif dan z score z complementary cumulativeTabel ini menunjukkan luasan daerah di bawah kurva normal dari z score yang diinginkan menuju ke sebelah kanan sampai tak hingga. Dengan kata lain, merupakan peluang suatu nilai lebih dari z atau PZ ≥ z.Cara Membuat Tabel ZJenis tabel z score yang sering digunakan adalah tabel z cumulative. Oleh karena itu, pada artikel ini hanya akan membahas cara pembuatan tabel z score untuk jenis cumulative. Untuk membuat tabel z cumulative, kamu dapat menggunakan Microsoft Excel. Berikut adalah langkah-langkah pembuatannya Isi sel A2 dengan nilai -3,42. Isi sel A3 dengan rumus =A2+0,1. Salin rumus tersebut hingga sel A70. Ini artinya kamu membuat z score secara berurutan dimulai dari -3,4 sampai 3,4 dengan selisih sebesar 0, Dokumentasi Penulis3. Isi sel B1 dengan nilai 04. Isi sel C1 dengan rumus =B1+0,01. Salin rumus tersebut hingga sel K1. Ini berarti kamu membuat angka yang berurutan mulai dari 0,00 hingga 0,09 dengan selisih sebesar 0, Dokumentasi Penulis5. Isi sel B2 dengan rumus =NORMSDIST$A2-B$1. Salin rumus tersebut hingga sel Dokumentasi Penulis6. Blok sel B2 sampai dengan K2 kemudian drag sampai sel K35, sehingga sel yang terisi adalah bagian yang memiliki z score Dokumentasi Penulis7. Selanjutnya isi cell B36 dengan rumus =NORMSDIST$A36+B$1. Salin rumus tersebut hingga ke cell Dokumentasi Penulis8. Blok sel B36 sampai dengan K36 kemudian drag sampai sel K70 sehingga sel yang terisi adalah daerah dengan z score positif dan semua bagian dalam tabel z score sudah Dokumentasi PenulisCara Membaca Tabel ZUntuk setiap jenis tabel z, maka cara membacanya juga berbeda-beda. Pada kali ini, akan diberikan contoh bagaimana cara membaca tabel z cumulative yang telah dibuat berdasarkan langkah-langkah sebelumnya. Sebagai contoh jika ingin dicari nilai dari PZ ≤ 2,56.Langkah pertama yang harus dilakukan yaitu dengan menentukan letak nilai 2,5 pada kolom pertama pada tabel contoh yang telah dibuat sebelumnya, nilai 2,5 terletak di sel A61, lalu tarik garis ke arah berikutnya, kamu menentukan letak nilai 0,04 pada baris pertama berdasarkan tabel contoh, nilai 0,04 terletak di sel F1. Setelah itu tarik garis ke bawah sampai menemukan titik pertemuan dengan hasil langkah Dokumentasi PenulisDengan demikian diperoleh nilai dari PZ ≤ 2,56 adalah 0, juga Korelasi Product Moment PearsonContoh SoalDalam menggunakan tabel z score, hal yang perlu diingat bahwa tabel ini merupakan tabel transformasi z score. Jadi kamu perlu melakukan transformasi data yang berdistribusi normal menjadi berdistribusi normal standar. Berikut akan disajikan beberapa contoh soal terkait penggunaan tabel z Soal 1Berapakah luas daerah kurva distribusi normal standar pada Z > -0,56?Pembahasan Karena yang digunakan adalah tabel z cumulative maka kamu harus mengubah bentuk probabilitasnya menjadi PZ ≤ zP Z > -0,54 = 1 – PZ ≤ -0,54Berdasarkan tabel z cumulative nilai dari PZ ≤ -0,54 adalah 0,2946 sehinggaP Z > -0,54 = 1 – PZ ≤ -0,54 = 1 – 0,2946 = 0,7054Contoh Soal 2Diketahui suatu distribusi normal dengan mean 60 dan standar deviasi 16. Berapa luasan daerah di bawah kurva normal antara 68 sampai 84?Pembahasan Distribusi yang diketahui adalah distribusi normal, sedangkan tabel z merupakan tabel distribusi z tabel transformasi z score. Oleh karena itu, perlu dilakukan x = 68 ke zSumber Dokumentasi PenulisTransformasi x = 84 ke zSumber Dokumentasi PenulisSehingga diperoleh P68 ≤ X ≤84 = P0,5 ≤ Z ≤ 1,5P68 ≤ X ≤84 = PZ ≤ 1,5 – PZ ≤ 0,5P68 ≤ X ≤84 = 0,9332 – 0,6915 = 0,2417P68 ≤ X ≤84 = 0,2417Contoh Soal 3Rata-rata produktivitas padi di provinsi A tahun 2017 adalah 6 ton per ha hektar, dengan standar deviasi 0,9 ton. Jika luas sawah di provinsi A adalah ha dan produktivitas padi berdistribusi normal, berapa luas sawah yang produktivitasnya lebih dari 8 ton?Pembahasan Diketahui data berdistribusi normal dengan rata-rata 6 ton dan standar deviasi 0,9. Akan dicari luas sawah yang produktivitasnya lebih dari 8 ton atau dapat dinotasikan dengan PX > 8. Agar dapat memanfaatkan tabel distribusi z tabel transformasi z score dilakukan transformasi x = 8 ke dalam bentuk Dokumentasi PenulisSehingga PX > 8 = PZ > 2,22 = 1 – PZ ≤ 2,22 = 1 – 0,9868 = 0,0132Dapat diinterpretasikan bahwa 0,0132 dari luas sawah di provinsi A memiliki produktivitas lebih dari 8 ton. Diketahui luas sawah di provinsi A adalah ha, maka luas sawah di provinsi A yang memiliki produktivitas lebih dari 8 ton adalah 0,0132 x = 1320 Soal 4Diketahui umur sebuah lampu produksi PT. XYZ yang berdistribusi secara normal dengan rata-rata 800 jam dan standar deviasinya 40 jam. Carilah probabilitas lampu produksi perusahaan tersebut akan Berumur kurang dari 834 dan lebih dari 778 kurang dari 750 atau lebih dari 900 Diketahui umur lampu berdistribusi normal dengan rata-rata 800 jam dan standar deviasi 40 lampu dari perusahaan tersebut berumur kurang dari 834 jam dan lebih dari 778 jam dapat dinyatakan sebagai PX ≤ 834 dan X ≥ 778.Sumber Dokumentasi PenulisBerdasarkan ilustrasi di atas, daerah yang merupakan irisan dilewati oleh dua garis adalah 778 ≤ X ≤ 834. Maka PX ≤ 834 dan X ≥ 778 sama dengan P778 ≤ X ≤ 834.P778 ≤ X ≤ 834 = PX ≤ 834 – PX ≤ 778Agar dapat memanfaatkan tabel distribusi z tabel transformasi z score, maka dilakukanlah x = 834 ke zSumber Dokumentasi PenulisTransformasi x = 778 ke zSumber Dokumentasi PenulisSehingga P778 ≤ X ≤ 834 = PX ≤ 834 – PX ≤ 778P778 ≤ X ≤ 834 = PZ ≤ 0,85 – PZ ≤ -0,55P778 ≤ X ≤ 834 = 0,8023 – 0,2912 = 0,5111Jadi probabilitas lampu dari perusahaan tersebut berumur kurang dari 834 jam dan lebih dari 778 jam adalah 0, lampu dari perusahaan tersebut berumur kurang dari 750 jam atau lebih dari 900 jam dapat dinotasikan dengan PX ≤ 750 atau X ≥ 900.Daerah X ≤ 750 atau X ≥ 900 merupakan daerah gabungan dari kedua interval tersebut, sehingga PX ≤ 750 atau X ≥ 900 = PX ≤ 750 + PX ≥ 900PX ≤ 750 atau X ≥ 900 = PX ≤ 750+ 1 – PX ≤ 900Lalu dilakukan transformasi agar dapat menggunakan tabel distribusi z tabel transformasi z score.Transformasi x = 750Sumber Dokumentasi PenulisTransformasi x = 900Sumber Dokumentasi PenulisPX ≤ 750 atau X ≥ 900 = PX ≤ 750 + 1 – PX ≤ 900PX ≤ 750 atau X ≥ 900 = PZ ≤ -1,25 + 1 – PZ ≤ 2,5PX ≤ 750 atau X ≥ 900 = PZ ≤ -1,25 + 1 – PZ ≤ 2,5PX ≤ 750 atau X ≥ 900 = 0,1056 + 1 – 0,9938PX ≤ 750 atau X ≥ 900 = 0,1118Jadi probabilitas lampu dari perusahaan tersebut berumur kurang dari 750 jam atau lebih dari 900 jam adalah 0, Soal 5Ketika kamu melakukan uji Z, pada bagian daerah kritik daerah penolakan biasanya kamu menemukan istilah Zα . Misalkan pada uji z satu sisi, kamu menemukan daerah kritiknya berbunyi H0 ditolak jika Z > Zα . Bagaimana cara membaca tabel z untuk mencari Zα ?Zα dapat diinterpretasikan sebagai nilai z yang memberikan probabilitas sebesar 1-α. Sebagai contoh digunakan α = 0,05. Maka dicari nilai z yang menghasilkan probabilitas sebesar 1-0,05 = 0,95. Nilai probabilitas berada di bagian dalam tabel sehingga kamu perlu mencari nilai di dalam tabel yang bernilai paling dekat dengan 0, Dokumentasi PenulisDitemukan nilai yang paling dekat dengan 0,95 adalah 0,9495 selisih dengan 0,95 sebesar 0,0005 dan 0,9505 selisih dengan 0,95 sebesar 0,0005. Dari posisi 0,9495 tarik garis ke arah kiri sampai menunjukkan posisi nilai z yaitu 1,6. Lalu tarik garis ke arah atas sampai ke nilai yang berada di baris pertama yaitu 0,04. Sehingga diperoleh nilai z untuk 0,9495 adalah 1, nilai 0,9505 juga dilakukan hal yang sama, tarik garis ke arah kiri dan kemudian ke arah atas sampai berada di posisi nilai z. Diperoleh nilai z untuk 0,9505 adalah 1,65. Selanjutnya kamu perlu mencari nilai dari 1,64 + 1,65/ 2 = 1,645. Jadi, nilai Z0,05 = 1, juga Uji Linearitas SPSSSekian pembahasan mengenai distribusi normal dan tabel z. Kamu dapat membaca referensi lain sebagai tambahan. Semoga artikel ini dapat membantu pemahaman Ott, Lyman. 2001. An Introduction to Statistical Methods and Data Analysis Fifth Edition. Duxbury.
Buatkalian Girls yang penasaran dan pengen tau bagaimana ciri-ciri cowok yang suka sama kalian, langsung aja di baca 12 Tanda Cowok Tertarik SamaCewek (kamu) berikut. * Menaikkan Alis. Seseorang akan secara refleks menaikkan alisnya saat bertemu seseorang yang menarik perhatiannya. Menaikkan alis bisa membuka mata lebih lebar dan membuat mata
Berikutdata lengkap tentang Ukuran Balok Beton Bentang 10 Meter. Media Pembelajaran Penulangan Balok Beton Animasi 3d Universitas. Pemodelan Prototipe Balok T Jembatan Dengan Pelat Baja Sebagai. Rumus Tinggi Balok Beton Bertulang Blog Nobel. Sloof Rumah Lantai 1 2 Struktur Rumahmembangun Rumah Sesuai.
Misalnyapersentase barang yang rusak = 10%, nasabah yang tidak puas = 25%, penduduk suatu daerah yang buta huruf = 15%, dan lain sebagainya. Pengujian hipotesis dinyatakan dalam proporsi. Perumusan hipotesis sebagai berikut : H0 : D4RLQyl.